Genetic genealogy is the use of genealogical DNA tests, i.e., DNA profiling and Genetic testing, in combination with traditional Genealogy, to infer Genetic distance between individuals. This application of genetics came to be used by family historians in the 21st century, as DNA tests became affordable. The tests have been promoted by amateur groups, such as surname study groups or regional genealogical groups, as well as research projects such as the Genographic Project.
about 30 million people had been tested. As the field developed, the aims of practitioners broadened, with many seeking knowledge of their ancestry beyond the recent centuries, for which traditional pedigrees can be constructed.
Bryan Sykes, a molecular biologist at Oxford University, tested the new methodology in general surname research. His study of the Sykes surname, published in 2000, obtained results by looking at four Y-STR markers on the male chromosome. It pointed the way to genetics becoming a valuable assistant in the service of genealogy and history.
In 2007, 23andMe was the first company to offer saliva-based direct-to-consumer testing, and the first to use autosomal DNA for ancestry testing. An autosome is one of the 22 chromosomes other than the X or Y chromosomes. They are transmitted from all ancestors in recent generations and so can be used to match with other testers who may be related. Companies were later also able to use this data to estimate how much of each ethnicity a customer has. FamilyTreeDNA entered this market in 2010, followed by AncestryDNA in 2012, and the number of tests grew rapidly. By 2018 autosomal testing had become the predominant type of test, and for many companies the only test they offered.
MyHeritage launched its testing service in 2016, allowing users to use to collect samples, and introduced new analysis tools in 2019: autoclusters (grouping matches visually into clusters) and family tree theories (suggesting conceivable relations between DNA matches by combining several MyHeritage trees and the Geni global family tree). Living DNA, founded in 2015, uses to provide reports on autosomal ancestry, Y, and mtDNA ancestry.
By 2019, the combined total of customers at the four largest companies was 26 million. By August 2019, it was reported that about 30 million people had had their DNA tested for genealogical purposes.
GEDmatch said in 2018 that about half of their one million profiles were American. Due to the limited geographical distribution of DNA testees, databases and results limit knowledge of variation present in other racial groups. However, this can only be remedied by testing more individuals, making geneticists aware of the genetic variation present in currently underrepresented testees.
The phase of the project in 2016 was Geno 2.0 Next Generation. As of 2018, almost one-million participants in over 140 countries had joined the project. In 2019, it was announced that from the end of May no further testing kits would be sold and results would only be available to the end of 2020.
The earliest test takers were customers most often those who started with a Y-chromosome test to determine their Patrilineality. These men often took part in surname projects. The first phase of the Genographic Project brought new participants into genetic genealogy. Those who tested were as likely to be interested in direct maternal heritage as their paternal. The number of those taking mtDNA tests increased. The introduction of autosomal SNP tests based on microarray chip technology changed the demographics. Women were as likely as men to test themselves.
One of the earliest interest groups to emerge was the International Society of Genetic Genealogy (ISOGG). Their stated goal is to promote DNA testing for genealogy. Members advocate the use of genetics in genealogical research and the group facilitates networking among genetic genealogists. Since 2006 ISOGG has maintained the regularly updated ISOGG Y-chromosome phylogenetic tree. ISOGG aims to keep the tree as up-to-date as possible, incorporating new SNPs. However, the tree has been described by academics as not completely academically verified, phylogenetic trees of Y chromosome haplogroups.
A father passes his entire Y chromosome—including the Male-Specific Y (MSY) region—to his son with very minimal change, barring occasional mutations. This region does not recombine with the mother's chromosomes (unlike autosomes and the X), so it is a nearly unshuffled genetic record of direct paternal descent. Y-chromosome lineages can be tracked with a standard phylogeny tree, using traditional data structures and monophylogeny.
Because surnames in many cultures are transmitted down the paternal line, this testing is often used by surname DNA projects.
While early studies using STRs made bold claims that large numbers of men descend from prominent historical individuals (e.g. Niall of the Nine Hostages and Genghis Khan), more recent SNP studies have shown many of these to be invalid. In particular, STR mutations are now known to be largely unreliable in proving kinship, as these mutations can appear in multiple unrelated lineages by chance.
To prove descent from a common ancestor in the male line, a Y-DNA clade requires triangulation back to a most recent common ancestor (MRCA), who is usually referred to by the name of the mutation (e.g. L21, U106, etc.) as a shorthand. A SNP mutation unique to a family or kin group is referred to as a "defining mutation", the testing of which can exclude men not related through the male line within one or two centuries at the most. This has been exploited in recent times to identify the defining mutations of noble and royal lineages, such as the Stewarts of Scotland and the Uí Briúin dynasty of Ireland.
While mitochondrial and Y-chromosome DNA matching offer the most definitive confirmation of ancestral relationships, the information from a tested individual is relevant to a decreasing fraction of their ancestors from earlier generations. Potential ambiguity must be considered when seeking confirmation from comparison of autosomal DNA. The first source of ambiguity arises from the underlying similarity of every individual's DNA sequence. Many short gene segments will be identical by coincidental recombination (Identical by State: IBS) rather than inheritance from a single ancestor (Identical by Descent: IBD). Segments of greater length offer increased confidence of a shared ancestor. A second source of ambiguity results from the random distribution of genes to each child of a parent. Only inherit exactly the same gene segments. Although a child inherits exactly half of their DNA from each parent, the percentage inherited from any given ancestor in an earlier generation (with the exception of X chromosome DNA) varies within a normal distribution around a median value of 100% divided by the number of ancestors in that generation. An individual comparing autosomal DNA with ancestors of successively earlier generations will encounter an increasing number of ancestors from whom they inherited no DNA segments of significant length. Since individuals inherit only a small portion of their DNA from each of their great-grandparents, descended from the same ancestor may not inherit the same DNA segments from that ancestor. All descendants of the same parent or grandparent, and nearly all descendants of the same great-grandparent, will share gene segments of significant length; but approximately 10% of 3rd cousins, 55% of 4th cousins, 85% of 5th cousins, and more than 95% of more distant cousins will share no gene segments of significant length. Failure to share a gene segment of significant length does not disprove the shared ancestry of a distant cousin.
The best autosomal DNA method for confirming ancestry is to compare DNA with known relatives. A more complicated task is using a DNA database to identify previously unknown individuals who share DNA with the individual of interest; and then attempting to find shared ancestors with those individuals. The first problem with the latter procedure involves the relatively poor family history knowledge of most database populations. A significant percentage of individuals in many DNA databases have done DNA testing because they are uncertain of their parentage, and many who confidently identify their parents are unable or unwilling to share information about earlier generations. It may be easier to identify a shared ancestor in the fortunate situation of shared DNA between two individuals with comprehensive family trees, but finding multiple shared ancestors raises the question of from which of those ancestors was the shared segment inherited. Resolving that ambiguity typically requires finding a third individual sharing both the ancestor and the gene segment of interest.
Modern DNA sequencing has identified various ancestral components in contemporary populations. A number of these genetic elements have West Eurasian origins. They include the following ancestral components, with their geographical hubs and main associated populations:
For several years, researchers and laboratories from around the world sampled indigenous populations from around the globe in an effort to map historical human migration patterns. The National Geographic Society's Genographic Project aims to map historical human migration patterns by collecting and analyzing DNA samples from over 100,000 people across five continents. The DNA Clans Genetic Ancestry Analysis measures a person's precise genetic connections to indigenous ethnic groups from around the world.
Uses
Direct maternal lineages
Direct paternal lineages
Pedigree family trees
Ancestral origins
Human migration
Law enforcement
See also
Further reading
Books
Documentaries
Journals
External links
|
|